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ABSTRACT

Computational fluiddynamics is being used increasinglyto predict flows for

aerospacepropulsion applications,yet thereis still a need foran easy to use, computa-

tionally inexpensive turbulencemodel capable of accuratelypredictinga wide range

of turbulentflows. The Baldwin-Lomaxmodel is the most widely used algebraic

model, even though it has known difficulties calculatingflows withstrong adverse

pressuregradientsand largeregions of separation. The modifiedmixing length model

(MML)was developed specifically to handle the separationwhich occurs on airfoils

and has given significantly betterresultsthan the Baldwin-Lomaxmodel. The success

of these calculations warrantsfurtherevaluation and developmentof MML.

The objective of this workwas to evaluate the performanceof MMLfor zero

and adversepressure gradientflows, and modify it as needed. TheProteusNavier-

Stokes code was used for this study and all results were comparedwith experimental

data and with calculations made using the Baldwin-Lomax algebraicmodel, which is

currentlyavailable in Proteus.

The MMLmodel was firstevaluated for zero pressuregradientflow over a flat

plate, then modified to producethe properboundarylayer growth. Additional modifi-

cations,based on experimental data for three adverse pressuregradientflows, were

also implemented. The adaptedmodel, called MMLPG(modifiedmixing length

model for pressuregradient flows), was then evaluated for a typicalpropulsion flow

problem,flow througha transonicdiffuser. Threecases wereexamined: flow with no

shock, a weak shock and a strongshock.



The results of these calculationsindicate that the objectives of this study have

been met. Overall, MMLPG is capable of accurately predicting the adverse pressure

, gradient flowsexamined in this study, giving generally better agreement with experi-

mental data than the Baldwin-Lomax model.
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CHAPTER I

INTRODUCTION

1.1 MotivationandObjectives

ComputationalFluidDynamics(CFD)is avaluabletool forcalculatingthe

turbulentflowfieldsthat occurin engineeringfluidflowproblems.Someof the

characteristicsof turbulentflow includerandomfluctuationsin fluidproperties,the

enhancementof mixing,diffusionanddissipation,andthe presenceof eddiesof

varioussizes. Turbulentflowis, therefore,verydifficultto predicttheoretically.

Experimentsprovidemuchusefulinformationaboutturbulentflowfieldsbutare

costlyand timeconsuming,so CFDis beingusedincreasinglyto reduceoroptimize

theamountof experimentaltestingwhichmustbe done.

MostCFDcodes solve the equationsof conservationof mass,momentum

(Navier-Stokes)andenergyand,in principle,completelydescribethedetailsof turbu-

lentflow. However,except forverysimpleproblems,theseequationscannotbe

solvedexactlydueto the limitedcapabilitiesof computatiolialresources.Most

engineeringproblemsareprimarilyconcernedwithmeanfluidpropertiesandnot with

thedetailsof theturbulentfluctuations;the meanpropertiesca_thereforebe

computedusingtheReynolds-averagedformof theNavier-Stokesequations.! In

Reynoldsaveraging,the conservationequationsareaveragedovera timescalethat is

largecomparedto the largesttimescaleof thefluctuatingmotion.1,2,3Theaveraging

procedureintroducesnew termswhichrepresenttheturbulenttransportof mean

, momentum,heatandmass. Theresultingaveragedequationsare not closedand

1



empirical information, in the form of a turbulence model, must be used to close the

system.

A turbulence model is a mathematical model consisting of an equation or set

of equations which determines the turbulent transport terms in the mean flow

equations and hence closes the system of equations. 1 Turbulence models give an

approximate description of the flow by describing the overall effect of turbulence on

the mean flow, rather than describing the details of the turbulent motion. Since turbu-

lent transport processes depend on factors such as geometry, swirl effects and

buoyancy, turbulence models, which are usually developed based on hypotheses about

a certain flow or range of flows, usually have a limited range of applicability.

Typically, a model which is complex and consists of a large number of equations is

difficult to use and is computationally expensive. Often this increase in "cost" is not

proportional to the improvements in the computation. ,

For most engineering applications, a turbulence model should be easy to

implement, computationally inexpensive and applicable to a wide range of flows.

Algebraic turbulence models, also called zero-equation models, are simple and

inexpensive, however they generally have only a narrow range of applicability. The

most widely used algebraic model, the Baldwin-Lomax model (BLM), 4 fits this

description, but it is known to have difficulties calculating adverse pressure gradief_t

and separated flows, 5-12 the regime it was designed to handle.

In 1989, the modified mixing length model (MML) was developed and used to

calculate separated flows over airfoils, flowfields that BLM was unable to accurately

predict. 5 It is based on Prandtl's mixing length hypothesis 3 and uses a mixing length

that is dependent on the local wall shear stress. The objective of this work is to
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continue the development of MML to expand its range of applicability to include

boundary layer flows with adverse pressure gradients.

1.2 Overview

Chapter II gives some background information on the Proteus Navier-Stokes

code, which was used to make all of the calculations in this work. It also describes the

implementation of turbulence into the governing equations and deseribes problems

encountered with BLM, the current algebraic turbulence model in Proteus. Chapter II

also describes the original formulation of MML. Chapter III reports calculations

made with MML for zero pressure gradient flow over a fiat plate, and then describes

the modifications made to improve these results for both zero and adverse pressure

gradient flows. The resulting modified version of MML is called MMLPG. Chapter

IV compares MMLPG and BLM for three transonic diffuser flow testcases: flow with

a weak shock, strong shock, and no shock. Chapter V contains a summary of this

work and a discussion of the conclusions drawn.



CHAPTER II

BACKGROUND

2.1 The ProteusNavier-Stokes Code

The Proteus Navier-Stokes code, 13"14developed at the NASA Lewis

ResearchCenter,is a user-oriented,full Navier-Stokes code for aerospacepropulsion

applications. Proteus solves the Reynolds-averaged,unsteady,compressible Navier-

Stokes equations in strong conservationlaw form. Two separateversions of the code

exist: one for two-dimensionalplane or axisyrmnetricflow, and one for three-dimen-

sional flow. A primaryobjective of the Proteuseffortwas to make the code easy to

use and modify. Therefore, code readability,modularityanddocumentationwere

emphasized, rendering the code ideal for the insertionand developmentof a new

turbulencemodel.

The governing equations in Proteus are writtenin Cartesiancoordinates and

then transformedto a nonorthogonal,body-fittedsystem (see Appendix 1).13 They

aresolved by marchingin time using a fully-coupled alternatingdirection implicit

solutionprocedurewith generalized firstor secondordertime differencing.15'16 The

boundaryconditions are also treated implicitly and can be steady o'runsteady. All

terms, including diffusion terms, are linearized to second orderusing Taylorseries

expansions. The two turbulencemodels originally availablein Proteusare the

Baldwin-Lomaxalgebraic model4 and the Chien k-_ two-equationmodel.17

In additionto solving the full, time-averagedNavier-Stokesequations,

Proteus includes options to solve the thin-layer andEulerequations, and to eliminate

4



the energy equation by assuming constant stagnation enthalpy. Artificial viscosity is

used to minimize the odd-even decoupling resulting from the use of central spatial

- differencingfor the convective terms, and to control pre- and post-shock oscillations

in supersonic flow.13 Two artificial viscosity models are available: a combination

implicit/explicit constant coefficient model, 18and an explicit nonlinear coefficient

model designed specifically for flows with shock waves.19 The artificial viscosity is

discussed in more detail in Appendix 2. At the NASA Lewis Research Center the

code is typically run either on the CRAY X-MP or CRAY Y-MP computer, and is

highly vectorized. For all calculations made herein, the two-dimensional/axisymmet-

de version of the code was run on the CRAY Y-MP computer.

2.2 Algebraic Turbulence Modeling and the Baldwin-Lomax Model

Accurate modeling of turbulence is essential to the computation of complex

propulsion flow fields. Several types of turbulence models are available, ranging
i

from zero-equation algebraic models to multi-equation Reynolds-stress models.

Algebraic models are the most algorithmieally simple and eomputationally inexpen-

sive models and were therefore chosen as the focus of this effort.

Proteus, along with the majority of Navier-Stokes codes, uses the Boussinesq

assumption, 3which states that the turbulent stresses behave like the molecular viscous

stresses and therefore are proportional to the mean velocity gradient. The resulting

total shear stress for a two-dimensional flow is given by13

(au+. x = Ixcf (2.1)

, The effective viscosity is defined as Ixcu= Ix+ Ixt,where Ixis the molecular viscosity

and Ixtis the turbulent, or "eddy" viscosity. The same analogy applies to the heat flux

and the normal stresses, which are both defined in Appendix 1, such that an effective



second coefficient of viscosity is defined as _ff = 2_+ _t and an effective thermal

conductivity coefficient is defined as kaf = k + kt.

Most algebraic turbulencemodels are based on Prandtl's mixing length

hypothesis which builds on the Boussinesq assumption. 1 Prandtl made an analogy

between molecular motion and turbulent flow. In molecular motion, the molecular

viscosity is proportional to the average velocity and the mean free path of the

molecules. In turbulent flow, Prandtl assumed that the turbulent viscosity is propor-

tional to the characteristicvelocity of the fluctuatingmotionand to a typical length,

calledthe "mixinglength",of thismotion.Inotherwords,

Ixt = pvtl (2.2)

where vt is the turbulent velocity scale and the mixing length,/, isthe transverse

distance over which fluid particles maintain their original momentum. Prandtl further

assumed that the turbulent velocity scale is equal to the mixing length times the veloc-

ity gradient so that

r,/ l l (23)
_t,= I_yl

[3u] is the velocity scale, where u is the component of velocity in theThe quantity l
primaryflow directionand y is the coordinateperpendicularto the primaryflow direc-

tion.

The current algebraic turbulence model in Proteus, the Baldwin-Lomax model

(BLM), is given in Appendix 3. It is the most weU-known and widely used algebraic

turbulence model. An extension of the Cebeei-Smith model,20 which requires knowl-

edge of the outeredge of the boundary layer, the Baldwin-Lomax model was devel-

oped to handle separated flows while avoiding the necessity of finding this outer edge.



Several references report problems with BLM in regions of strong pressure

gradient and in flows with large regions of separation. Yu6 reports problems ealeulat-

, ing surface pressures on the outboard wing region of a wing-body configuration when

the angle of attack is high and separation occurs. Visbal and Knight7 report that the

BLM outer formulation is unsuitable for separated supersonic flow and also is unable

to predict the recovery of the boundary layer downstream of re,attachment. Degani &

Sehift_ report that BLM is unsuitable in regions of cross flow separation due to

ambiguities in computing the outer length scale. Menterq reports that BLM underesti-

mates the displacement thickness for the increasingly adverse pressure gradient flow

of Samuel & Joubert 21and that it also gives an incorrect prediction of the adverse

pressure gradient flow of Driver.22 Potapczuk5 reports problems with BLM in

predicting the separation and unsteady behavior on airfoils with and without leading

edge ice accretion. Stock and Haase 10report that BLM does not predict the correct

trends for _tt or the Reynolds stresses in adverse pressuregradient and separated

flows.

There are several reasons why BLM has problems computing flows with large

pressure gradients and large regions of separation. The primary difficulty occurs in

finding the maximum of the F(y) function (defined Appendix 3), which has two or

more peaks in regions of separated flow. This behavior is shown in figure 1 taken

from reference 5. As the relative magnitudes of the local maxima change, Ymax

•(defined in Appendix 3), may suddenly jump, producing unrealistic discontinuities in

the turbulent viscosity. Selection of the global maxima often results in a gross over-

" prediction of the turbulent viscosity. Some authors 7' 23 have found that choosing the

outermost peak produces better results, while others have elected to use the innermost
a

peak.8 To account for upstream turbulence history effects, Visbal and Knight7 used
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(a) Attached flow

(b) Separatedflow

Figure 1. F(y) profiles for attached and separated flow conditions.



BLM with relaxation. They also found thatthe BLM constants Copand CKl_b(see

Appendix3) should vary with Mach number. Sakowski et alll expoundeduponthis

• by findinga relation for Copas a function of Mach numberand pressuregradient,but

encounteredproblems causedby the vanishingof the VanDriest factorwhen xw,the

local shearstress at the wall, approacheszero. Toremedy this, they used the local

shear in place of x,,. Launderand Pridden24report several modificationsto the Van

Driest factor2 for pressuregradientflows, many of which incorporatethe local shear

stress insteadof xw.

A simpler, yet effective, approachwas used by Potapezuk,5 who developed a

modifiedmixing length (MML)model that does not requirea boundarylayer thick-

ness, but also avoids all problems associated with the determinationof a maximum

F(y). This model is described in detail in the following section.

2.3 The ModifiedMixing LengthTurbulenceModel

The modified mixing length (MML)model was developed by Potapczulc5to

fill the need for an algebraic model to handle turbulentflow with largeseparated

regions. The particularproblemof interestwas an airfoil at angle of attackwith and

without leading edge ice accretions. Previouscalculations madewith BLM gave poor

resultsandthe source of the problemwas the functionF(y), which had multiplepeaks

for this flow case.

The MML model avoids the need to seek a maximum of some ad hoe function.

In accordance with Prandtl's mixing length theory, the MML model determines the

mixing length using the wall shear stress and the normal distance from the wall, with

the maximum mixing length capped off at a given value. Thus, it is a two layer

" model, such that the length scale depends on conditions near the surface and remains
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constant in the separatedregion, This assumptionis valid since there is no substantial

enhancementof turbulencein separatedregions. The turbulentviscosity is given by

Ixt= P/ lc°l (2.4)

where the velocity gradient in equation (2.3) has been replaced by the vorticity magni-

tude, Iol. Figure 2, taken from reference 20, shows the behavior of the mixing length

in a turbulent boundary layer. Several empirical formulas are available to evaluate the

inner region, 20' 24which consists of the viscous sublayer and the overlap layer. The

MML model uses the van Driest formulation,20which is given by

y.

where A + = 26 and the value of K:,the yon Karman constant, is 0.4. The quantity y+

is defined as

y+= Y (2.6)
y

where y is the shear length scale,

• Ix' (2.7)y -

For y+ > 5A+ (but still in the "inner" region), the mixing length is approximated by

_y; this is the original Prandtl theory, and is consistent with the well-known logarith-

mic profile. In the outer region of the boundary layer, the outer mixing length behaves

according to

/outer = cons tant x y* (2.8)
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taken from reference 20.
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The MML model uses a blending function to give a smooth transition between

the inner and outer layers and is given by

l(y) = _¢_-_2y_1- (1-_t) 1-e , y <C_ (2.9)

el • .

t(y) = y _ (2.10)

In this formulation, C_y*is the distance above the surface at which I saturates, and C2

controls the curvature of the blending region. See figure 3 for a typical MML model

mixing length profile.

Calculations made by Potapczuk with the MML model showed improvements

over the BLM calculations for the prediction of the separated region, the maximum [
I

lift coefficient and vortex shedding frequencies. Since the MML model was devel-

oped to solve the specific problem of flow over airfoils, a comprehensive evaluation

of the model for more general flowfields was not a part of that study. The objective of

the present study is to evaluate the MM'Lmodel for general zero pressure gradient and

adverse pressure gradient turbulent boundary layer flows and examine possible

modifications to improve the performance of the model.
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CHAPTER III

EVALUATION AND MODIFICATION OF MML

The MMLmodel, described in Chapter II, was modified so that it could better

calculate turbulentboundarylayer flows with zero andadverse pressuregradients.

The first step in thisprocess was to optimize the computationof the wall shearstress

used in MML. Next, MMLwas used to calculate a turbulentboundarylayerwith zero

pressuregradient. These results exhibited poor agreement with experimentaldata, so

modificationswere made to MML to remedythis problem. Then modificationscorre-

spondingto two adverse pressuregradientflows of Bradshaw25were successfully

incorporatedinto MML. Finally, all of the modificationswere combined into one

general model, called MMLPG.

3.1 Optimization of Shear Stress Estimate

Since the MML turbulence model is a function of the wall shear stress, it is

important to accurately calculate this quantity. The wall shear stress is given by

The molecular viscosity, bt, is a very small quantitycomparedto the velocity gradient,

(_-_) , which is stronglydependenton several factorssuch as the finite differenced _

scheme used, the grid spacing and the numerical featuresof the code. It is important

to minimizethe sensitivity of these factors because small changes in the estimate of

(_u) may actually producelarge changes in xw. A more global approach is to use a
_Yw

14



15

parabolic extrapolation of x_,,using the shear stress at two interior grid points, and the

momentum equation in the streamwise direction, which reduces to

(_w_'c)= (___),, (3.2)

at the wall. Using a parabola to define x,

x = ay2+ by + c (3.3)

where,

"cI- "c2- b (Yl - Y2)
a = (3.4)

y_-y_

b= (3.5)

1
c = _ [x t +'t 2- a (y_+ y_) - b (y, + Y2)] (3.6)

Here, the subscripts 1 and 2 denote interior points as depicted in figure 4. Note that

xw=c,since y=0 at the wall. Also note that the shear stress at interior points is defined

by

_u _____) (3.7)x =  tcff

The parabolic extrapolation in equations (3.3) through (3.6) gives a reliable value for

'c,,and avoids problems that could arise from sensitivity of the (_u) estimate. In_Y ,,

fact, (_u) (_u) = "c+llx._Yw can be found from _y
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Figure 4. Estimationof t;. using equation (3.3).
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Modifications were made to the Proteuscode to calculate the shear stress
J

profile in the boundarylayer. These modificationsmadeuse of the generalizedgrid

. transformationsin Proteussuch that

._ Ou Ou _ Ov Or.

= + (3.8)

where _y = TIx= 0 for an orthogonalgrid.13 The derivativesin the above equation

arecalculated in Proteususing 3-point, second-ordercentraldifferencing. To see if

higherorderdifferencingwould improve the calculation,5-point, fourth-ordercentral

differencing26was also used to calculate the velocity gradients.

The test case of incompressible, zero pressuregradient,turbulentflow over a

fiatplate, as shown in figure5, was used to evaluate theshear stresscalculations. The

grid, shown in figure6, had $1 points in both the streamwiseand normaldirections

and hadgrid points clusteredat the wall to resolve the boundarylayer and at the

upstreamboundaryto resolve the imposed boundarycondition. In addition, it was

evaluatedto insuregrid indepence for zero pressuregradient flow. The reference

velocity, temperature,pressureand length used in Proteuswere 33.53 m/s, 288.3 K,

101.3 kPa and 1.98 m, respectively. At the upstreamboundary,the velocity profile,

whichwas computedusing the correlationof Musker,27was held fixed. The flow was

computedusing both MMLandBLM, using both higherand lower orderdifferencing

of the velocity gradients in the shear stresscomputation. The MML constants were

chosen as CI=3000 and (22=5,which were found to give good results at Rex=7xl06.

Both turbulencemodels producedgood agreementwith experimentalvelocity-defect

profiles,28as shown in figure7, which shows calculationsat Rex=7xl06 made with

' the lower order differencing of the velocity gradients. The quantity u_ in figure7 is

the shear velocity, given by u_ = ,[(l't,,I/O).The accuracy of the finite differencing
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Figure5. Illustrationof flow overa fiat plate.

Figure 6. Computational grid for zero pressure gradient fiat plate ease.
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producedno noticeable improvement in the velocity profiles, but there were slight

differences in the shear stress profile very close to the wall, which can be observed in

the plots of figure 8. The higher-orderdifferencing produced a smoother shear stress

profile near the wall, and thus subsequent calculations will make use of the higher-

order calculation of the velocity gradients.

Near separated regions of flow, xwapproaches zero which will cause y and

thus the mixing length to become infinitely large. To avoid this problem, the follow-

ing local average used by Potapezuk5 was incorporated:

Ixil= 0.11"q_21+ °-2lxi-l[ + °-4lxd+ °'2lxi+,[+ 0.1Ixi+21 (3.9)

The subscripts in equation (3.9) refer to grid points in the streamwise direction along

the wall.

3.2 Evaluation and Modification for Zero Pressure GradientFlows

In reference 5, a series of cases were runfor flow overa NACA0012 airfoil at

•conditions near stall using both BLM and MML. TheMMLconstantsCI=2000 and

C2=5were chosen basedon correlationswith experimentaldata. The Baldwin-Lomax

modeltended to suppressthe trailing-edge separation,which occurs on the topsurface

of the airfoil, by over-predicting lxtthroughoutthe separatedregion. On the other

hand,MMLpredictedhigh values of ILtt only nearthe separation point, thus allowing

the reverse flow to develop downstream. In the currentstudy,MMLwas evaluated for

turbulentflow over a flatplate at zero pressure gradient,as deseribedbelow.

In the preliminaryanalysis presented in section 3.1, the constants C1= 3000

andC2 = 5 were foundto give good agreement for Rex = 7x106. At other locations on

the plate, i.e., at other Reynolds numbers,the BLM velocity-defect profilescorrectly

exhibit similarity but the MMLprofiles do not, as shown in figure9. In a turbulent
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flow over a fiat plate, the boundary layer thickness increases with increasing x-

distance along the plate. To accurately model this flow,the turbulent length scale

must also increase proportionately with the boundary layer thickness. In MML, the

outer length scale, as given in equation (2.10), is equal to a constant times the shear
.

length scale, y*. The increase in y with x-distance is negligible, resulting in an

essentially constantvalue of the outer length scale for all Reynolds numbers. Plots of

I1t, as shown in figure 10, illustrate that the turbulentviscosity profiles calculated with

MML are nearly the same at all Reynold's numbers, but the BLM ttt profiles increase

with increasing Reynolds number. Though MML produced the correct length scales

for an airfoil near stall,5 modifications are needed to make it applicable to general

boundary layer flows.

In order to make MML applicable over a range of Reynolds numbers, the

optimal saturation lengths, or C1values, were found at several Reynolds numbers.

The following simplified formulas were used to calculate the inner and outer mixing

lengths:

( '11+ = k"y+ 1-e "-_ , Ci <Y+ (3.10)

l+©tp ---- I_CI CI > Y+ (3.11)

Here, l+ is the nondimensional form of the mixing length, equivalent to I/y*, and the

outer length scale,/+,,p, is simply the inner length scale evaluated at y+ = Ct. From

these results,/+€,p was found as a function of the skin friction, el, giving

+

, l c,p = 1860- 6.20 × 105ef (3.12)

o
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Figure 10. Turbulent viscosity for zero pressure gradient flat plate flow at three
Reynolds numbers.



25

The velocity-defect profiles of figure 11 show that equations (3.10) and (3.12) with

" l+ = rain (l+,/+cap),allow the mixing length to grow proportionately with the bound-

. ary layer thickness. The modified MML is better than BLM at predicting the local

skin friction coefficient, el, as shown in figure 12; the wiggles at the upstream bound-

ary are a result of the imposed upstream boundary condition.

3.3 Modifications for Adverse Pressure Gradient Flows

Two equilibrium pressure gradient flows of Bradshaw25were usedto modify

MML for adverse pressure gradients effects. Equilibrium turbulent flows are flows

which have a constant value of Clauser's equilibrium parameter,2

8t 3p_

13 - ,cw_x (3.13)

In addition, they correspond to a power-law velocity profile distribution, u€*_xa,

where the magnitude of the-exponent, a, indicates the strength of the pressuregradi-

ent. Theyalso exhibit similaritywhenplottedin velocity-defectcoordinates. Three

flows wereexamined in the experimental study of Bradshaw;25these were flows with

zero, mild, and strong pressure gradients. The corresponding values of the exponen(,

a,are0, -0.15,and-0.255,respectively;thecorrespondingvalues of 13are0, 1 and 5.

The modifications to the turbulence model are based on the trendsexhibited in

the mixinglengthat the three pressure gradientsas shown in figure13 taken from

Bradshaw25.Notethatforallthreepressuregradients,themaximummixinglengthis

approximately0.08 8, the saturation distance from the wall is approximately 0.48, and

' the slope of the curves near the wall increases with the strength of the pressure gradi-

ent. These three features were used to develop the following model:
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Gl
Y+) 1 - e , y < Gl (3.14)

• /+ = _:G3_-_21- (1-Gi

GI +
I+ = _G3_-_2 y > G, (3.15)

A new parameter, G3, has been introduced and the constants C1 and C2in the original

MML model have been replaced by the functions G1and G2, where

G 1 = 0.4G 4 (3.16)

G2 = 5G3_ (3.17)

Here, G4 is essentially a nondimensional boundary layer thickness which is a function

of _ and el, and G3 controls the slope of mixing length curve and is a function of 13.

The following correlation was assumed for G4:

G4 = G5+ G6cf (3.18)

Separate values of the parameters G3, G5, and G6, corresponding to each of the three

pressure gradients, were found and are given in table 1. This results in essentially

three separate models, one for each pressure gradient, depending on which set of

parameters is used. The results of these.modifications are compared with Baldwin-

Lomax calculations in the velocity-defect plots of figures 14 through 16. (Note: The

Baldwin-Lomax results for the zero pressure gradient case are given in figure 9.) The

reference conditions used are the same as those given in section 3.1. For the two

, adversepressure gradient cases, the turbulent velocity profiles at the upstream bound-

ary were computed using a cubic spline fit of the Bradshaw experimental data and
J

held fixed; the appropriate pressure gradient was imposed at the freestream boundary.
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Table 1. Parameters used in pressure gradient modifications.

Pressure
Gradient
Strength 13 G3 G5 G6
zero 0 1.00 23,300 -7.75x106

mild 1 1.25 30,100 -1.16x107

strong 5 1.53 33,800 -2.09x107

20
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-- Rex=13x106
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4 -- I , " I - '-' "_ _l__
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Figure 14. Velocity-defect for zero pressure gradient flow calculated using the
modified MML of seetion 3.3.
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Figure 15. Velocity-defect for mild pressure gradient flow.
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Both cases were computedusing the grid of figure 6, but for the strong pressure gradi-

ent case, the number of grid points in the vertical direction was increased to 101.

3.4 Final Model

The final step in developing this turbulence model was to combine all of the

above modifications to get one general turbulence model. To accomplish this, the

following correlations were developed for the parameters G3,G5 and G6:

G3 = 1.0 13< 0.0 (3.18a)

G3 = 1.0+ 0.30713- 0.0391132 0.0 < 13< 5.34 (3.18b)

G3 = 1.52 13> 5.34 (3.18c)

G5 = 23, 300 13< 0.0 (3.18d)

G5 = 23, 300 + 856013- 1230132 0.0 < 13< 5.34 (3.18e)

G5 = 33, 900 13> 5.34 (3.180

G6 = -7.75x 106 13< 0.0 O.18g)

G6 = -7.75x106- 4.51 x 106+386,000132 0.0< 13<5.34 (3.18h)

G6= -20, 900 13> 5.34 (3.18i)

The available experimental data is limited to only the three values of 13which are in

, the range 0 < 13< 5.34, and the quadratic correlations of equations (3.18b), (3.18e) and

(3.18h) are based on this limited data. For 13<0,the values in (3.18a), (3.18d) and

(3.18g), were obtained by evaluating the quadratic equations at 13=0. Similarly, for
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15>5.34,the values in (3.18c), (3.180 and (3.18i) were obtained by evaluating the

quadratic equations at 13=5.34.

Since 13,which is defined in equation (3.13), is a function of the displacement

thickness, 81, a correlation was also developed to avoid the problem of calculating 81

directly and thus having to define the edge of the boundary layer:

8, = (G7+Gscf) y* (3.19)

The parameters G7 and G8 were defined in a manner similar to G3, G5 and G6 as given

below.

G 7 = 2910 13< 0 (3.19a)

G7 = 2910+270013-3.43132 0<13<5.34 (3.19b)

G_ = 7560 13> 5.34 (3.19e)

Gs = -96900 13< 0 (3.19a)

Gs = - 988, 000 - 1.15x 10613+ 89, 000132 0 < 13< 5.34 (3.19e)

Gs = -4.57 × 106 13> 5.34. (3.190

The value of 13used to define G7 and G8 is lagged in time.

The final model, called MMLPG, was developed using the equilibrium turbu-

lent flows of Bradshaw and is defined by equations (3.14) through (3.19). The result-

ing velocity-defect profiles for all three pressure gradient flows are shown in figure 17
m

and exhibit good agreement with the experimental data, with the exception of the

strong pressure gradient case. The calculations were performed on a CRAY Y-MP

computer and the computational times are given in table 2. The strong pressure gradi-

/
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Figure 17. Velocity-defect profiles computed using MMLPG.
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• Table 2. Computationaltimes for flatplate flows.

(a) Zero Pressure Gradient

see.liter./
Model Iterations grid point
BLM 2000 2.02x10"5

MMLPG 2000 2.00x10"5

(b) Mild Pressure Gradient

see.liter./
Model Iterations grid point
BLM 3000 2.14x10-5

MMLPG 3000 2.17z10-5

(c) Strong Pressure Gradient

sec./iter./
Model Iterations grid point

BLM 18,000 2.14x10 -5

MMLPG 10,000 1.96x10 "5
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ent case took considerably longer to reach convergence because the code had difficul-

ties resolving oscillations induced at the upstream boundary, which was a fixed

velocity profileas mentionedin section 3.3.

3.5 Averaging for Multiple Boundaries

If both walls in a given coordinate direction are solid surfaces, the turbulent

mixing lengths are computed separately at each surface and then averaged. The

Sajben diffuser, which is described in Chapter IV,has solid walls at the upper and

lower vertical boundaries, and is a typical example of a geometry which would require

averaging of the mixing length. The averaging formula of Appendix 3 (equation C.9),

which was used to average the Fwakefunction in the Baldwin-Lomax model, is also

used here to average the mixing length:

1 - lift + 12f2
fl + f2 (3.20)

If the lower andupper boundaries in the vertical direction, are solid surfaces, as in the

Sajben diffuser, then l 1and l2 are the mixing lengths at the lower and upper bound-

aries, respectively. The functions fl and f2 are defined in equation C. 10 of Appendix

3.
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CHAPTER IV
i

ADVERSE PRESSURE GRADIENT "lEST CASES

To evaluate MMLPG for some typical propulsionflows, a converging-diverg-

ing duct, called the Sajben diffuser, was used. This duct is the diffuser portion of the

inlet for a rocket/ramjet propulsion system; detailed experimental and computational

data are available in the literature for flows both with and without external pressure

pulse excitations. 30"35This study, however, dealt only with the unexcited flows. The

geometry of the diffuser is given in figure 18: the throat height, H, is 44 ram; the

entrance-to-throat ratio is 1.4, and the exit-to-throat ratio is 1.5. The grid, shown in

figure 19, is the same as that used by references 13 and 34, and has 81 streamwise

points and 51 vertical points. It was packed in the vertical direction near the walls in i

order to resolve the turbulent boundary layers and in the streamwise direction near the

throat to resolve the normal shock. The reliability of this grid is discussed in Appen-

dix 2. Three transonic flow cases were run. The flowfields were determined by

setting R, the ratio of the exit static pressure to the inlet total pressure. The first case

had a weak normal shock with R---0.82;the second ease had subsonic flow throughout
y

(no shock) with R--0.862, and the thirdcase had a strongnormal shock with R---0.72.

The referencevelocity, temperature,pressureand lengthused in Proteuswere 4.72 m/

s, 292 K, 135 kPa, and .044 m respectively. These values matchthe values used in

othernumericalsimulations of this flow.13'32'34The initial conditions were zero

velocity and constant temperatureand pressureeverywhere in the flowfield. Both

39
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Figure 19. Computational grid for the Sajben diffuser.
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cases were runusing MMLPG and two implementations of the Baldwin-Lomax

model.

. Two slightly different implementations of BLM were used because it was

discovered, during the course of these calculations, that a slight change in the BLM

coding, which occurred in the update of Proteus from Version 1.014to 2.0,13 can

effect turbulent calculations. References 14 and 34 give results for the weak and no

shock cases calculated with Version 1.0 of Proteus and using BLM. These calcula-

tions were repeated in the current study using the current version of Proteus, Version

2.0, and slightly different results were obtained. (These results will be presented later

in this chapter.) Discrepancies in the results were caused by differences in the imple-

mentation of the BLM model, more specifically, in the F_,,kcfunction. Version 2.0 of

Proteus computes Fw_kcusing equation (C.6) in Appendix 3, and version 1.0 of

Proteuscomputes Fwakeas

• [ Y,,xFmx
F,,,kc= min_ 2 Ym,x (4.1)

\
which is the formulation stated in the original paper by Baldwin and Lomax.4 The

BLM implementations using equations (4.1) and (C.6) will be referred to as BLM1

and BLM2, respectively.

4.1 Weak Shock Case

The weak shock case was used as an example case in the Proteus User's

, Manual, 13,14and thereforewas runfirst in order to gain familiarity with running this

type of flow. It was computed as described in reference 13: First the exit pressure

was gradually reduced to R = 0.1338 to establish supersonic flow throughout the

diffuser; then it was gradually raised to R = 0.82, the desired ratio to establish the
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weak normal shock, and iterated until the solution was no longerchanging apprecia-
s

bly with time. A pl0t of the static pressure on the top wall at two locations, one

upstream and one downstream of the normal shock, as the solution progresses is given

in figure 20. This indicates that pressure reaches a steady state level, which, for

practical engineering purposes, can be considered a converged solution. A closer

examination of the results indicates that the solution oscillates slightly about a mean

steady level. This may be caused by inherent unsteadiness in the flow; Salmon et a130

mention that very low-amplitude, self-sustaining oscillations were observed experi-

mentally. It is more likely that the oscillations present in this calculation are numeri-

cal in nature, which is common for flows with shock waves. The oscillations

originating at the shock may not be damped out by the artificial viscosity and there-

fore tend to migrate upstream. The artificial viscosity used in Proteus to calculate this

flow was second- and fourth-order explicit, both using the nonlinear coefficient model

of Jameson et al;19 the respective smoothing coefficientsare _:2and r,4, as given in

Appendix 2. For the entire calculation, lc2 was set to 0.1; 1¢4 was set to .005 for the

first 6000 iterations, while the exit pressure was changing, and decreased to .0004 for

the remaining 3000 iterations, which were at a constant exit pressure. More details

about the effects of the artificial viscosity on this solution are included in Appendix 2.

The static pressure distribution on the top and bottom walls is given in figure

21. The small discrepancies just downstream of the shock are due to insufficient

streamwise grid distribution. The shock location on the upper wall and the shock

Maeh number at the edge of the upper wall boundary layer are given in table 3. Both

MMLPG and BLM2 do a good job of predicting the pressure distribution on the wall

and the location of the shock. Each case was run for 9000 iterations and calculations

made using MMLPG, BLM1 and BLM2 required 3.44x 10-5see/iteration/grid point,
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Figure 21. Static pressure distribution on the top and bottom walls of the Sajben
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Table3. Shock location and Mach number,weak shock case.

Shock Shock
Turbulence Mach Location
Model Number (x/H)

MMLPG 1.233 1.57

BLM1 1.309 1.73

BLM2 1.228 1_49

Experiment30 1.235 1.41
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3.90X 10-5 sec/iteration/grid point and 3.36 x 10-5sec/iteration/grid point, respec-
.t

tively on the CRAY Y-MP computer.

4.2 No Shock Case

The second diffuser test case did not have a normal shock wave. To compute

this case,the exit pressure was gradually lowered to R=0.862 then iterated until the

solution stopped changing. A steady state solution was reached with subsonic flow

throughout the entire diffuser. The Proteus default artificial viscosity, which uses the

constant coefficient model of Steger18with both fourth-order explicit and second-

order implicit artificial viscosity, was used; the smoothing coefficients, eE(4)and _!

(defined in Appendix 2), had values of 1.0 and 2.0, respectively.

The static pressure distribution on the top and bottom walls is given in figure

22 and shows that MMLPG is clearly better than BLM1 and BLM2 at predicting the

pressure distribution, though it still predicts a larger pressure drop than that given by

•the experimental data. The MMLPG results are similar to the calculations of Hseih et

al33who attributed the lower throat pressure to the fact that the experiment was highly

sensitive to small perturbations in exit pressure. The maximum Maeh numbers in the

diffuser are given in table 4. Though no experimental data is available to compare

these values, the MMLPG results are in best agreement with the calculations of

Georgiadis35who used the PARC Navier-Stokes code36 for the same geometry. Each

case was run for 9000 iterations and calculations using MMLPG, BLM1 and BLM2

3.45xi0- see/iteration/grid point, 2.90x10-5see/iteration/grid point andrequired 5

3.36x10-5 see/iteration/grid point, respectively, on the CRAY Y-MPcomputer.
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Figure 22. Static pressure distribution on the top and bottom walls of the Sajben
diffuser, no shock case.
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Table 4. Maximum Mach number,no shock case.

Maximum
Turbulence Math
Model Number

MMLPG 0.881

BLM1 0.972

BLM2 0.976



49

4.3 Strong Shock Case

The final diffuser flow computed was the case with a strong normal shock

positioned in the throat. This case was run in a manner similar to the weak shock

case: First the exit pressure was gradually lowered to R=0.1338 to achieve supersonic

flow throughout the diffuser; then it was gradually raised to R=0.72 to establish the

strong normal shock in the throat region, then iterated there until the solution stopped

changing appreciably with time. Proteus was run in both steady and unsteady modes

to try to simulate the experimentally observed self-excited oscillations of 217 Hz.30

Unsteady mode in Proteus is achieved by calculating a global time step whereas

steady mode uses a local time step to speed up the computation. Neither calculation

simulated the experimentally observed oscillatory behavior, but instead produced very

small numerical oscillations in the flow properties. (The artificial viscosity used for

the strong shock calculations was the same as that used for the weak shock calcula-

tion.) Figure 23 shows the static pressure on the top wall at the experimental shock

location and illustrates the behavior of these small oscillations; the calculation shown

was run in unsteady mode with MMLPG.

The static pressure on the top and bottom walls are presented in figure 24 and

the shock location and Math number at the edge of the top wall boundary layer are

given in table 5. Both BLM2 and MMLPG predicted the shock location too far

downstream, while BLM1 predicted it too far upstream. The experiment predicted a

region of separation on the top wall just downstream of the shock with the flow

reattaching at x/H=6.0. MMLPG predicted a very small region of separation on the

' top wall which reattached at x/H=3.6. BLM2 predicted very small regions of separa-

tion on both the top and bottom walls which reattached at x/H=3.8 and x/H=6.2,

respectively, and BLM1 predicted a separation along the bottom wall that did not
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case.
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Table 5. Shock location and Mach number, strong shock case

Shock Shock
Turbulence Math Location
Model Number (x/H)

MMLPG 1.626 3.13

BLM1 1.411 2.11

BLM2 1.665 2.90

Experiment 30 1.353 1.98
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, reattach. The separated behavior is illustrated in figure 25, which gives the velocity

profiles at four locations downstream of the shock. These peculiar results can be

attributed to the behavior of the turbulent viscosity as shown in figure 26. MMLPG

and BLM2 compute much higher values of !.tt than does BLM1; this is due to the large

increase in vorticity downstream of the shock. In BLM1, as given in equation (4.1),

the second formula results in Fwakebeing inversely proportional to the vorticity

magnitude, and this helps to reduce the value of _tt for this model. Each case was run

for 10,000 iterations and the steady calculations using MMLPG, BLM1 and BLM2

required 3.54x10"5see/iteration/grid point, 3.83x10-5 sec/iteration/grid point, and

3.82x10-5 see/iteration/grid point, respectively, on the CRAY Y-MP computer.
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Figure 26. Turbulent viscosity ratio, _tt/_t,for the Sajben diffuser, strong shock case.



CHAPTER V

SUMMARY AND CONCLUSIONS

The objective of this work was to modify the MML algebraic turbulence

model to increase its range of applicability to include zero and adverse pressure gradi-

ent boundary layer flows. To accomplish this objective, modifications were made

based on experimental data for zero and adverse pressure gradient fiat plate flows.

The resulting model, called MMLPG, successfully predicted the fiat plate flows and

also successfully predicted three transonic diffuser flows. This indicates that the

objective of this work has been met.

In order to provide meaningful solutions for turbulent flows, CFD codes

require good turbulence models. Algebraic models are the simplest and the most

computationally inexpensive of turbulence models, and so were chosen as the focus of

this study. Proteus, which was used to make all of the calculations in this work, is a

Reynolds averaged Navier-Stokes code for aerospace propulsion flows and contains

the Baldwin-Lomax algebraic turbulence model as a default. The Baldwin-Lomax

model is known to have problems calculating certain flowfields, namely flows with

strong pressure gradients and large separated regions. A promising newer model, the

MML model, produced significantly better results than the Baldwin-Lomax model for

separated airfoil flows,5 but it was not evaluated for other types of flows. The objec-

tive of the current work was to continue development of MML to increase its range of

applicability to include boundary layer flows with zero and adverse pressure gradi-

ents.
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• To accomplish this objective, MML was installed in Proteus and first used to

calculate zero pressure gradient flow over a flat plate. These results indicated that the

original MML model was not allowing for the proper boundary layer growth with

increasing Reynolds number. To remedy this behavior, a relationship was found for

the saturation length scale as a function of the local skin friction coefficient. This

modified version of MML allowed for the proper boundary layer growth and therefore

produced the correct velocity-defect profiles. Next, MML was modified to calculate

adverse pressure gradient flows using the experimental data of Bradshaw for zero,

mild and strong adverse pressure gradient flows. These modifications were combined

into one generalized model, called MMLPG. This new model accurately predicted the

zero and adverse pressure gradient flows and exhibited better agreement with experi-

mental data than the Baldwin-Lomax model.

To more thoroughly evaluate MMLPG for other adverse pressure gradient

flows, this model was also used to calculate three transonic diffuser flow cases: flow

with a weak shock, flow with no shock, and flow with a strong shock. These are flows

typically encountered in aerospace propulsion applications. The MMLPG results

were compared with results calculated using two slightly different implementations of

the Baldwin-Lomax model, referred to as BLM1 and BLM2. The differences in the

two models arise from the calculation of the Fwakefunction, as discussed in _2hapter

IV.

For the weak shock ease, MMLPG and BLM2 did equally well in predicting

the shock Mach Number and location, and also in predicting the static pressure distri-

bution on the top and bottom walls. However, BLM1 over-predicted the shock Mach

number and location and did not match the wall static pressures in the throat region of

the diffuser. For the no shock case, MMLPG was significantly better than either of the
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Baldwin-Lomax models at predicting the static pressures on the walls and MMLPG

also predicted a maximum Mach number that was in close agreement with the results

of Georgiadis. 35

The strong shock diffuser flow was beyond the capabilities of all three

models. Both MMLPG and BLM2 over-predicted the shock Mach number and

location, as well as the pressure distribution on the walls, while the BLM1 results

were in reasonable agreement for these quantities. None of the models were able to

correctly predict the shock-induced separation on the top wall; in fact, BLM1

predicted no separation at all on the top wall yet predicted a very large, unattached

separation on the bottom wall. The primary reason the MMLPG and BLM2 results

differ greatly from the BLM1 results is explained by the turbulent viscosity values.

MMLPG and BLM2 gave maximum turbulent viscosity values of 23,000 and 21,000

times the molecular viscosity, respectively, while BLM1 gave a maximum turbulent

viscosity of only 4,600 times the molecular viscosity. The turbulent viscosity is

proportional to the vortieity, which becomes very large just downstream of the normal

shock, however, the Fwakefunction used in BLM1 is inversely proportional to the

vorticity resulting in a lower overall turbulent viscosity. The poor performance of all

of the models for this case can also be attributed to the fact that all of the models are

equilibrium turbulence models being used to calculate a flow which is clearly

nonequilibrium. The poor performance of MMLPG for the strong shock case is also

explained by the derivation of the model, which is based on experimental data for 13

values between 0 and 5, while this flow encountered 13values as high as 12,000.

Considering that MMLPG did well at calculating the less severe no shock and weak

shock flows indicates that it is most likely applicable to other propulsion flows at •

these less severe types of conditions.
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, The flat plate and transonic diffuser results indicate that the modified version

of the MML model, MMLPG, is capable of accurately predicting turbulent flows with

and without adverse pressure gradients. Thus, the objective of this work, which was

to evaluate the original MML model and modify it to increase its range of applicabil-

ity to include adverse pressure gradient flows, has been met. Future work should

include continued validation of the model for these types of flows as well as continued

development of the model to better account for stronger adverse pressure gradient

flows both with and without separation.
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, APPENDIX 1

GOVERNING EQUATIONS OF PROTEUS

The governing equations of Proteus are the compressible Navier-Stokes

equations. The equations given below are taken from reference 13, but may also be

found in several references. 2'3'38 Since the two-dimensional/axisymmetrie version of

the Proteus code was used for all calculations discussed in this work, the two-dimen-

sional, planar equations are given here. (For the axisymmetric version of the

equations, which are somewhat more complex, consult reference 13.)

1. Cartesian Coordinates

In Cartesian coordinates, the continuity, x-momentum, y-momentum and

energy equations are written in strong conservation law form, using vector notation:

_)Q _)E _F OEv+OFv
+_-_ +_-_ = _-_ _-_ (A.1)

where

Q = pill (A.2)
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pu

Pu2+ P (A.2a)

E = | puv
L(Er+p)

VpvlpuvF (A.2b)
! Pv_. p/
/ /

l(Er+ P) _J

0JEv = "txx (A.2c)
qTxy

l"Cxx+ V'txy- q

I°1Fv = "CxY (A.2d)
q;yy

[U'Cxy+ V'_yy- q

In equation (A.2), the dependent variables are p, pu, pv and E_ the inviscid flux

vectors are E and F, and the viscous flux vectors are E V and FI_ The normal and

sh.earstresses, and the heat.flux are given by

_u .bu by.

^ 3v - 3u 3v.
,%= zg_+x(_+_

(Ou Ov (A.3) '% = _t _+_)
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qx = -k3x

_kOW
qY= 3y

2. Equation of State

In addition to the above equations, anequation of state is needed to relate the

pressure to the dependent variables. Proteus contains the equation of state for an ideal

gas:

p = pRT (A.4)

where R is the ideal gas constant. For a calorically perfect gas, this is equivalent to

p= (3(- 1) IEr- lp (u2+ v2)] (A.5)

3. Generalized Grid Transformation

The governing equations in section 1.0 are written in Cartesian coordinates

and are not well-suited for nonrectangular geometries and grids with unequal

spacing.13,39 To overcome these difficulties, the following generalized grid transfor-

mation is used to transform the governing equations from physical (x, y) coordinates

to rectangular orthogonal computational (_, 11)coordinates.

_= _(x,y) (A.6)
_1= 11(x, y)

The resulting spatial computational domain is square, and has uniform spacing. The

' chain rule is used to transform the partial derivatives in the Cartesian form of the
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governing equations, (A.1)-(A.3); for details, refer to Towne et al.13 The transformed

equations are written as
4

_ +_---_+_-_ = _ ._--_ (A.7)

where

0 = Q (A.8)

1
1_ = ff (E_ + F_, + Q_t) (A.8a)

1
= ff (Erl_ + Frly + Qrlt) (A.8b)

v = 2 (Ev_ + Fray) (A.8c)

^ 1
Fv = 7 (Evrl_ + FvTlY) (A.8d)

and J is the Jacobian of the transformation,

J = _xrly-_yrix (A.9)

4. Time Differencing

The generalized time differencing scheme of Beam & Warming16is used to

approximate the time derivative in equation (A.7):
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' -- 02 A(_n-ILQ=A0n a( 0n)+ 1 a(Y+
_t At 1+ 02 _t 1+ 02i_t 1+ 02 At (A.IO)

1 _ 02)At, (At2)1+OI(O_- _

where AQ n = _n+ 1_ _n, and the superscripts n and n+l denote the known and

unknown time levels, respectively.

The parameters 01 and 02 determine the type of time differencing used. Table

6 summarizes the available schemes.

Table 6. Time differencing schemes in Proteus

01 02 Method Truncation Error

1 0 Euler implicit ' O(At)

1/2 0 Trapezoidal implicit O(At)2

1 1/2 3-point backward implicit O(At)2'-

The Euler implicit method is recommended for steady flows and the 3-point backward

implicit method is recommended for unsteady flows.

5. Space Differencing

Spacial first derivatives in the _ direction are approximated using the follow-

ing second-order central difference formula.

• (_-_"_) _ _t.j -- £. l,j --fi-l.j (A.11)i,j 2A_

The computational grid spacing, At, is constant. A similar formula is used for first

derivatives in the rl direction.
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ARTIFICIAL VISCOSITY AND GRID CONVERGENCE

High frequency nonlinear instabilities can appear as the Proteus solution

develops. For example, physical phenomena, such as shock waves, can cause instabil-

ities when they are captured by the finite difference algorithm. In addition, high

Reynolds number flows may have oscillations resulting from the odd-even decoupling

inherent in the use of central spatial differencing of the convective terms. Artificial

viscosity may be used to suppress these oscillations. The two artificial viscosity

models in Proteus are the constant coefficient model of Steger18and the nonlinear

coefficient model of Jameson et al.19 The implementation of these models in general-

ized nonorthogonal coordinates was taken from Pulliam.40

1. Constant Coefficient Model

The constant coefficient model uses a combination of explicit and implicit

smoothing. The standard explicit artificial viscosity uses fourth-order differences.

Second-order explicit artificial viscosity, which provides more smoothing, is also

available in Proteus, however it is farely used because it introduces a large error. The

implicit smoothing is second order and is used to extend the linear stability bound of

the fourth-order explicit smoothing.

The explicit artificial viscosity is implemented in the Proteus alternating

direction implicit (ADI) algorithm15by adding the following terms to the right-hand

side source term for the first ADI sweep.
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. E_2)At E_a)At
j (V_A_Q+VnAaQ) J [ (V_A_)2Q+ (VnA_)2Q] (B.1)

i

where EE(2)and EE(4)are the second- and fourth-order explicit artificial viscosity

coefficients. The symbols V and A are the backward and forward first difference

operators for the first ADI sweep such that

V_Qi = Qi - Qi-i

A_Qi = Qi+l - Qi (B.2)
V_A_Qi= Qi+l - 2Qi + Qi-i

(V_A_) 2Qi = Qi+2 - 4Qi+l + 6Qi - 4Qi_l + Qi-2

Similar formulas are used in the rl direction.

The implicit artificial viscosity is implemented by adding the following terms

to the left-hand side of the governing equation.

EtAt ^*
j [V_A_(JAQ )] (B.3a)

E_At
j [VnA.(JAI)") ] (B.3b)

Equation (B.3a) is added for the first ADI sweep and equation (B.3b) is added for the

second ADI sweep. The constant E1 is the implicit artificial viscosity coefficient.

The optimum values of the coefficients EE(2), EE(4)and EI vary from problem

to problem. They should be small so as not to corrupt the physical solution, yet large

' enough to damp any instabilities. The Proteus User's Guide 13recommends starting

values of EE(4)=1.0, EE(2)=I.0and E1=2.0.
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2. Nonlinear Coefficient Model

The nonlinear coefficient artificial viscosity is explicit and contains second

and fourth-order differences. The following terms are added to the right-hand side of

the governing equations.

i.1 (B.4)

"_ _7-q { I---_jj + 1 "l- _-_jjl (1_(2) All Q - E_(4) A.q V_l ArlQ) j }

The difference operator A_V_A_Qiis defined by

A_Vr,A_Qi = Qi+2- 3Qi+x + Qi-, (B.5)

and the expression V is given by

V = Vx+ Vy (B.6)

where Vx and Vy are spectral radii defined by

IUI+ a,f_ + _

V_- A_ (B.7)

IVI+ ad_ + _i_
_Y= Vri

The second- and fourth- order nonlinear artificial viscosity coefficients are a

function of the pressure field. In the _ direction, they are given by

(_2))i = _2At max ((_i+,,°i, (_,-,) (B.8a) '

k

(e_')), = max [0, _c4At- (_2))i ] (B.Sb)

where
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' Oi = Pi+l-- 2Pi+ Pi-I (B.9)
Pi+l+ 2pi + Pi-l

4

Similar formulas are used in the rl direction.

The parametero is a pressure gradientscalingparameterwhich increases the

amount of second-order smoothing relative to fourth-order near shock waves. The

parameters K2 and K4 are user-specified constants. As with the constant coefficient

model, the optimum values of _:2and _¢4are problem dependent. Typical values range

from _¢4=0.005and 1¢2=0.01for flows with no shocks, to K4=0.0004 and _¢2=0.1for

flows with shocks. 13 Pulliam gives _2=0.25 and K:4=0.01as typical values for an

Euler analysis. 13,40

3. Comments on Artificial Viscosity

As previously mentioned, artificial viscosity is generally used to minimize

oscillations which occur when computing high Reynolds number flowsand flows with

shock waves. Since the artificial viscosity terms do not represent anything physical,

the coefficients should be as small as possible so as not to corrupt the solution, yet

large enough to damp the nonphysical instabilities. Optimum values of the artificial

viscosity coefficients vary from problem to problem; the coefficients used to calculate

the flows presented in Chapters III and IV were selected based on values used for

similar cases, as given in the Proteus User's Manual.13 Some representative test cases

were evaluated to insure that the chosen artificial viscosity did not corrupt the physi-

cal characteristics of the flow.

' The fiat plate flows presented in Chapter III were run using the constant

coefficient model with eE(4)=l.0, 8E(2)=0.0and el =2.0. For these flows, it was possi-h

ble to run Proteus with zero artificial viscosity, however the solutions took two to four

times longer to "converge," or reach a point where the solution stopped changing
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appreciably with time. Upon close examination, these solutions did not agree as

closely with experimental data as the solutions computed using artificial viscosity.

For the diffuser flows computed in Chapter IV, the artificial viscosity effects

were examined for the weak shock case. As mentioned in Chapter IV, the nonlinear

coefficient model was used. A value of _2=0.1 was used for the entire calculation,

with _4=0.005 while the exit pressure was changing (i.e, for the first 6000 iterations),

and _¢4=0.0004for the remaining 3000 iterations, which were at a constant exit

pressure. It was not possible to compute this flow without artificial viscosity, so the

effects of doubling and halving the smoothing coefficients was examined. The static

pressure distribution on the top and bottom walls for this comparison (computed using

MMLPG) is given in figure 27. The solution computed using half of the original

artificial viscosity was nearly identical to the original solution, indicating that the

originally chosen artificial viscosity is reasonable for this flow. Doubling the artificial

viscosity gave a less desirable result in that the normal shock was smeared over a

greater number of grid points.

4. Grid Convergence

Grid convergence is an important factor in the accuracy of a CFD calculation.

The grids used to make the flat plate and transonic diffuser calculations were assessed

to insure their grid independence. For the zero pressure gradient fiat plate calcula-

tions, a 101xl01 grid was initially chosen. The size of this grid was systematically

reduced in each direction in order to find the coarsest grid that would give a solution

which would not change if additional grid points were added° The 51x51 grid

described in Chapter III was chosen based on this study.

The grid used to make the transonic diffuser calculations had been used previ-

ously by others, 13'34so it is probable that this grid gives a reliable solution. As an
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Figure 27. Comparison of weak shock static pressure distributions, computed using
MMLPG and three different amounts of artificial viscosity.
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added check, the number of grid points in each direction was doubled, and the result-

ing 162x101 grid was used to compute the no shock flow using MMLPG. A compari-

son of these results with the results obtained using the 8lx51 grid of Chapter IV is °

given in figure 28 and indicates that the 81x51 grid is reliable.



77

(a) TopWall

1.o i i

0.9 ...........i.........................................i....................I...................i...................

0.8 ...................................._ \ O_.................../ i i

i \o i O_/ I -- 81x51Grid
0.7 ....................'_........ _ 162x101Grid

! [ O HsiehData_
0.6 : ._ i

i

0.5
-5.0 -2.5 0.0 2.5 5.0 7.5 10.0

x/H

J

(b)Bottom Wall

Figure 28. Comparison of no shock static pressure distributions, computed using
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APPENDIX 3

THE BALDWIN-LOMAX TURBULENCE MODEL

A generalized version of the Baldwin-Lomax algebraic turbulence model4 is

available in Proteus. 13 As mentioned in chapter in Chapter II, the turbulent shear and

normal stresses and the turbulent heat flux are modeled using the Boussinesq

approach, where the effective viscosity is defined as la_fr= g + gt, the second coeffi-

cient of viscosity is defined as _ff = _,+ )h, and the effective thermal conductivity

coefficient is defined as k,ff = k + k t.

For wall bounded flows, the Baldwin-Lomax model is a two-layer model:

(gt) i.._ ' Y< Y.os_over(

= _ (cA)gt
L(gt) o-t_r' Y> Yero_sov_r

where Ycrossoveris smallest value of y at which the inner and outer region values of gt

are equal. For free turbulent flows, gt = (gt) outer"

1. Inner Region

The inner region turbulent viscosity is computed from

(g) i.ner- P/21°)I (1.2)

where I is the mixing length given by

78
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/ y•)I = _:y 1 - e-_ (C.3)

The quantity Itol is the magnitude of the total vorticity, defined for two-dimensional

planar flow as

By 8___yIcol= _- (C.4)

2. Outer Region

In the outer region, the turbulent viscosity is given by

(_Ll't) outer "-KCep pFKlebFwake (C.5)

where K is the Clauser constant, taken as 0.0168 and Ccp is a constant taken as 1.6.

The quantity Fwakeis computed from

I YmaxFmax, for wall bounded flowsFwak€ -- (C.6)
/_ -2 Ymax
L_wkVdiff_ , for free turbulent flows

where the constant Cwk is 0.25 and

V_if_-IVlm,x-IVlmin

where €¢is the total velocity vector. The quantity Fmax is the maximum value of

, y.

ylrol1-e -_ for wall bounded flows

/ /,
' F(y) = (C.7)

ylc.l , for free turbulent flows
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and Ymaxis the value of y corresponding to Fmax. FKleb is the Klebanoff intermittency

factor which accounts for the experimentally observed phenomenon that as the free

stream is approached, the fraction of time the flow is turbulent decreases. It is given

by

[ " CKlcbY" 61-I (C.8)FKleb= 1--5.5 t_)

where CKleb is a constant taken as 0.3.

3. Multiple Boundaries

If both walls in a given coordinate direction are solid surfaces, the turbulence

model equations are applied separately at each surface and then averaged. The two

outer regions overlap, and it assumed that the two inner regions do not overlap. The

averaging procedure deals with the Fwakefunction. For example, in the vertical direc-

tion, if the upper and lower boundaries are both solid surfaces, the two values of Fwake

at a particular streamwise station are combined using the following averaging

formula:

(Fwake)lft + (Fwake) 2f2 (C.9)
Fwak¢= fl + f2

The quantities (Fwak¢)1and (Fwak¢)2are the separate values computed at the lower

and upper boundaries using equation (C.6). The functions fl and f2 are defined by

.2D 1. n

ft = (--__--) (C.10) ,
2D2 "

=
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, The constant n is set equal to 2.0, Yl and Y2are the normal distances to the bottom and

top surfaces, respectively, and D 1 and D2 are the normal distances from the two
N

surfaces to the location of [V[max-In addition, the Y/Ymaxvalue used in equation (C.8)

for FKleb is computed for both surfaces and the minimum value is used. These values

of FKleb and Fwake are then used in equation (C.5) to compute (lxt) o-ter'

4. Turbulent Values of _. and k

The turbulent second coefficient of viscosity is defined as

2
Xt = -_l-t, (C.11)

The turbulentthermalconductivitycoefficientis definedusing the Reynolds

analogyas

CP_I't (C.12)
k t - pr t

and Cpis the specific heat at constant pressure and Pr t is the turbulent Prandtl number.

In Proteus, the turbulent Prandtl number may be equal to a constant or computed using

the empirical formula of Wassel and Catton. 37 For the cases described herin, Pr t was

constant with the Proteus default value of 0.91.
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